
Accès IPv6 : Pourquoi & Comment

Bruno Stévant & Laurent Toutain

June 28, 2011

Historical view

Historical facts

Facts on Addresses

- Historical view Emergency Measures NAT Prefixes delegation
- Addresses
- Protocol
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

- 1983 : Research network for about 100 computers
- 1992 : Commercial activity
 - Exponential growth
- 1993 : Exhaustion of the class B address space
 - Allocation in the class C space
 - Require more information in routers memory
- Forecast of network collapse for 1998!
 - 1999 : Bob Metcalfe ate his Infoworld 1995 paper where he made this prediction

Facts on Addresses Emergency Measures

Emergency Measures: Better Addresses Management

Facts on Addresses

Historical view

Emergency Measures NAT Prefixes delegation

Addresses

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security

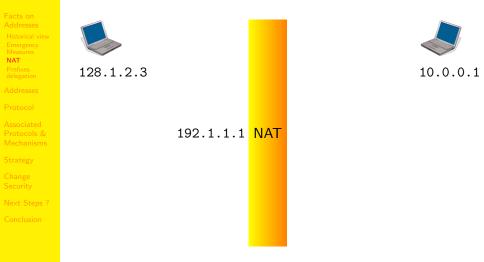
Next Steps ?

Conclusion

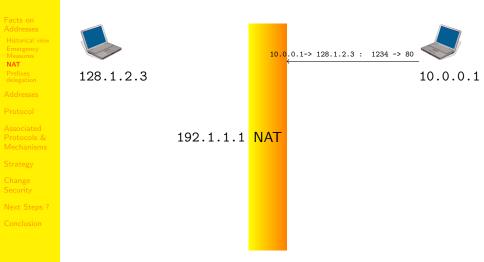
RFC 1517 - RFC 1520 (Sept 1993)

- Ask the internet community to give back allocated prefixes (RFC 1917)
- Re-use class C address space
- CIDR (Classless Internet Domain Routing)
 - network address = prefix/prefix length
 - less address waste
 - recommend aggregation (reduce routing table length)
- Introduce private prefixes (RFC 1918)

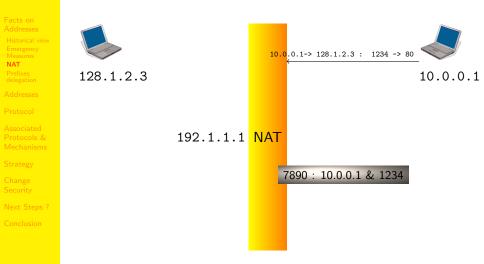
Facts on Addresses NAT

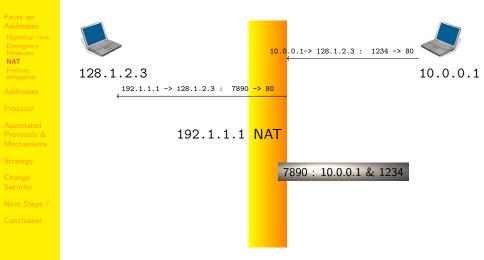


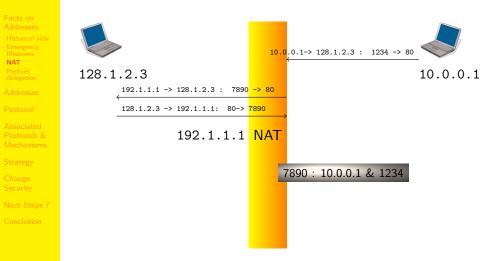
Emergency Measures: Private Addresses (RFC 1918 BCP)

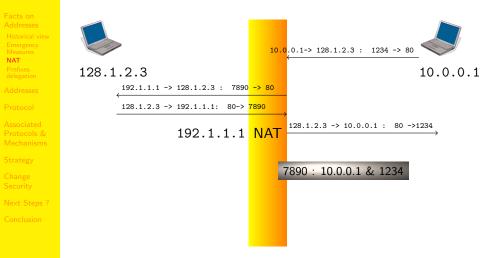

- Addresses Historical vi Emergency Measures NAT Prefixes
- Addresses
- Protocol
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

- Allow private addressing plans
- Addresses are used internally
- Similar to security architecture with firewalls
- Use of proxies or NAT to go outside
 - RFC 1631, RFC 2663 and RFC 2993
- NAPT is the most commonly used of NAT variations









NAT Impact

Addresses Historical vi Emergency Measures NAT

Prefixes delegation

Addresses

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security

Next Steps ?

Conclusion

first consequence

The application does not know its public name.

second consequence

It is difficult to contact a NATed equipment from outside

- Security feeling
- Solutions for NAT traversal exist

third consequence

There is no standardized behavior for NAT yet

Facts on Addresses Prefixes delegation

Addresses Historical vi Emergency Measures

Prefixes delegation

Addresses

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security

Next Steps ?

Conclusion

Classful Addressing

Ensure uniqueness

Facilitate administrative allocation

• One central entity

- Facilitate administrative allocation (hierarchical)
 - Nowadays 5 regional entities
- Pacilitate host location in the network
- 3 Allocate the minimum pool of addresses

Addresses Historical vi Emergency Measures NAT

Prefixes delegation

Addresses

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security

Next Steps ?

Conclusion

Classful Addressing

- Ensure uniqueness
- Pacilitate administrative allocation
 - One central entity

- Facilitate administrative allocation (hierarchical)
 - Nowadays 5 regional entities
- Pacilitate host location in the network
- 3 Allocate the minimum pool of addresses

Addresses Historical vie Emergency Measures NAT

Prefixes delegation

Addresses

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security

Next Steps ?

Conclusion

Classful Addressing

Ensure uniqueness

Pacilitate administrative allocation

• One central entity

- Facilitate administrative allocation (hierarchical)
 - Nowadays 5 regional entities
- Pacilitate host location in the network
- 3 Allocate the minimum pool of addresses

Addresses Historical vie Emergency Measures NAT

Prefixes delegation

Addresses

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security

Next Steps ?

Conclusion

Classful Addressing

Ensure uniqueness

Pacilitate administrative allocation

• One central entity

Class-Less (CIDR)

Facilitate administrative allocation (hierarchical)

Nowadays 5 regional entities

Pacilitate host location in the network

3 Allocate the minimum pool of addresses

Addresses Historical vie Emergency Measures NAT

Prefixes delegation

Addresses

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security

Next Steps ?

Conclusion

Classful Addressing

Ensure uniqueness

Pacilitate administrative allocation

• One central entity

- Facilitate administrative allocation (hierarchical)
 - Nowadays 5 regional entities
- Pacilitate host location in the network
- O Allocate the minimum pool of addresses

CIDR Administrative Point of View

Hacts on Addresses Historical vie Emergency Measures

Prefixes delegation

Addresses

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security

Next Steps ?

Conclusion

- A hierarchy of administrative registries
 - IANA/ICANN at the top
- 5 Regional Internet Registries (RIR)
 - APNIC (Asia Pacific Network Information Centre)
 - ARIN (American Registry for Internet Numbers)
 - LACNIC (Regional Latin-American and Caribbean IP Address Registry)
 - RIPE NCC (Réseaux IP Européens Network Coordination Center)
 - Europe, Middle east.
 - AfriNIC (Africa)
- Providers get prefixes allocation from RIR

RIR Regions

Prefixes delegation

Addresses

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security

Next Steps ?

Conclusion

Exhaustion of IPv4 Prefix Pool

- Addresses Historical vie Emergency Measures NAT
- Prefixes delegation
- Addresses
- Protocol
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

- IANA Unallocated Address Pool Depleted: February, 1st 2011
 - See: Whttp://www.nro.net/news/ipv4-free-pool-depleted
- RIR Unallocated Address Pool Exhaustion Forecasts: Start from May 2011
 - See: Whttp://www.potaroo.net/tools/ipv4/
 - See als: Whttp://www.ipv4depletion.com/

- Facts on Addresses Historical vie Emergency Measures NAT
- Prefixes delegation
- Addresses
- Protocol
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

IPv4 Address Space Consumption

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16						22	23	24	25		27		29		
32	33	34		36	37	38	39	40		42	43	44			47
48	49	50		52	53	54		56	57	58	59	60		62	63
64		66	67	68				72	73			76	77		79
80	81	82	83	84	85		87	88			91	92	93	94	95
96			99	100	101	102	103	104	105	106		108			
112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
144	145	146	147	148	149	150		152	153	154	155	156	157	158	
160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
208	209	210		212	212	214	215	216	217	218	219	220	221	222	223

Laurent Toutain & Bruno Stévant

June 28, 2011

16 / 65

Addresses

IPv6 Benefits

Facts on Addresses

Addresses

- Notation Addressing scheme Kind of addresse
- Protocol
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

- Larger address space from 2^{32} to 2^{128}
 - Permanent address
- Stateless auto-configuration of hosts
 - Layer 3 "Plug & Play" Protocol
- Simple header \Rightarrow Efficient routing
 - No checksum
 - No fragmentation by routers
 - Enhanced extension system
- Better support of mobility

Addresses

Notation

IPv6 addresses

- Facts on Addresses
- Addresses
- Notation Addressing scheme Kind of addresse
- Protocol
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

F2C:544:9E::2:EF8D:6B7 F692:: A:1455::A:6E0 D:63:D::4:3A:55F B33:C::F2 7:5059:3D:C0:: 9D::9BAC:B8CA:893F:80 1E:DE2:4C83::4E:39:F35:C875 2:: A:FDE3:76:B4F:D9D:: D6:: 369F:9:F8:DBF::2 DD4:B45:1:C42F:BE6:75:: 9D7B:7184:EF::3FB:BF1A:D80 FE9::B:3 EC:DB4:B:F:F11:E9:090 83:B9:08:B5:F:3F:AF:B84 E::35B:8572:7A3:FB2 99:F:9:8B76::BC9 D64:07:F394::BDB:DF40:08EE:A79E AC:23:5D:78::233:84:8 F0D:F::F4EB:0F:5C7 E71.F577.ED.E.9DE8.. B.3 1D3F.A0AA.. 70.8EA1..8.D5.81.2.F302 26..8880.7 93.. F.9.0 E:2:0:266B:: 763E:C:2E:1EB:F6:F4:14:16 E6:6:F4:B6:A888:979E:D78:09 9.754.5.90.0478.4143.1.7 2.8. 97B.C4..C36 440.7.5.7E8F.0.32EC.94.D0 8452.575 D::4CB4:E:2BF:5485:8CE 07:5::41 6B::A9:C 94FF:7B8::D9:51:26F 2::E:AE:ED:81 8241:: 5F97:: AD5B:259C:7D88:24:58:552A:: 94:4:9FD:4:87E5:: 5A8:2FF:1::CC EA:8904:7C:: 7C::D6B7:A7:B0:8B DC:6C::34:89 6C:1::5 7B3:6780:4:B1::E586 412:2:5E1:6DE5:5E3A:553:3:: 7F0:: B39::1:B77:DB 9D3:1F1:4B:3:B4E6:7681:09:D4A8 61:520::E0 1:28E9:0:095:DF:F2:: 1B61:4::1DE:50A 34BC:99::E9:9EFB E:EF:: BDC:672A:F4C8:A1::4:7:9CB7 C697:56AD:40:8:0::62

Addresses

Notation Addressing scheme Kind of addresses

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security

Next Steps ?

Conclusion

- Base format (a 16-octet Global IPv6 Address):
 - 2001:0db8:beef:0001:0000:0000:cafe:deca
- Compact Format:

2001:0db8:beef:0001:0000:0000:cafe:deca

- Remove 0 on the left of each word
- O To avoid ambiguity, substitute ONLY one sequence of zeros by ::
- an IPv4 address may also appear : ::ffff:192.0.2.1

Warning

2001:db8:3::/40 is in fact 2001:db8:0003::/40 and not 2001:db8:0300::/40

Addresses

- Notation Addressing scheme Kind of addresses
- Protocol
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

- Base format (a 16-octet Global IPv6 Address):
 - 2001:0db8:beef:0001:0000:0000:cafe:deca
- Compact Format:

2001:0db8:beef:0001:0000:0000:cafe:deca

Remove 0 on the left of each word

To avoid ambiguity, substitute ONLY one sequence of zeros by ::

• an IPv4 address may also appear : ::ffff:192.0.2.1

Warning

2001:db8:3::/40 is in fact 2001:db8:0003::/40 and not 2001:db8:0300::/40

Addresses

Notation Addressing scheme Kind of addresses

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security

Next Steps ?

Conclusion

- Base format (a 16-octet Global IPv6 Address):
 - 2001:0db8:beef:0001:0000:0000:cafe:deca
- Compact Format:

2001:db8:beef:1:0:0:cafe:deca

Remove 0 on the left of each word

To avoid ambiguity, substitute ONLY one sequence of zeros by ::

• an IPv4 address may also appear : ::ffff:192.0.2.1

Warning

2001:db8:3::/40 is in fact 2001:db8:0003::/40 and not 2001:db8:0300::/40

Addresses

- Notation Addressing scheme Kind of addresses
- Protocol
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

- Base format (a 16-octet Global IPv6 Address):
 - 2001:0db8:beef:0001:0000:0000:cafe:deca
- Compact Format:

2001:db8:beef:1:0:0:cafe:deca

- Remove 0 on the left of each word
- O To avoid ambiguity, substitute ONLY one sequence of zeros by ::

• an IPv4 address may also appear : ::ffff:192.0.2.1

Warning

2001:db8:3::/40 is in fact 2001:db8:0003::/40 and not 2001:db8:0300::/40

Addresses

- Notation Addressing scheme Kind of addresses
- Protocol
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

- Base format (a 16-octet Global IPv6 Address):
 - 2001:0db8:beef:0001:0000:0000:cafe:deca
- Compact Format:

2001:db8:beef:1::cafe:deca

- Remove 0 on the left of each word
- O To avoid ambiguity, substitute ONLY one sequence of zeros by ::
- an IPv4 address may also appear : ::ffff:192.0.2.1

Warning

2001:db8:3::/40 is in fact 2001:db8:0003::/40 and not 2001:db8:0300::/40

Addresses

- Notation Addressing scheme Kind of addresses
- Protocol
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

- Base format (a 16-octet Global IPv6 Address):
 - 2001:0db8:beef:0001:0000:0000:cafe:deca
- Compact Format:

2001:db8:beef:1::cafe:deca

- Remove 0 on the left of each word
- O To avoid ambiguity, substitute ONLY one sequence of zeros by ::
- an IPv4 address may also appear : ::ffff:192.0.2.1

Warning:

2001:db8:3::/40 is in fact 2001:db8:0003::/40 and not 2001:db8:0300::/40

Is it enough for the future ?

Facts on Addresses

Addresses

- Notation
- Addressing scheme Kind of addresses
- Protocol
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

- Address length
 - About 3.4×10³⁸ addresses
 - 60 000 trillion trillion addresses per inhabitant on earth
 - Addresses for every grain of sands in the world
 - IPv4: 6 addresses per US inhabitant, 1 in Europe, 0.01 in China and 0.001 in India
- Justification of a fixed-length address

Warning:

- An address for everything on the network and not an address for everything
- No addresses for the whole life:
 - Depends on your position on the network
 - ISP Renumbering may be possible

Addresses

Addressing scheme

Addressing scheme 🧐

Facts on Addresses

Addresses

Notation Addressing scheme Kind of addresses

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security

Next Steps ?

Conclusion

- RFC 4291 defines current IPv6 addresses
 - loopback (::1)
 - link local (fe80::/10)
 - global unicast (2000::/3)
 - multicast (ff00::/8)
- Use CIDR principles:
 - Prefix / prefix length notation
 - 2001:db8:face::/48
 - 2001:db8:face:bed:cafe:deca:dead:beef/64
- Interfaces have several IPv6 addresses
 - at least a link-local and a global unicast addresses

Address Format 🗐

Facts on Addresses

Addresses Notation

Addressing scheme Kind of addresse

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security

Next Steps ?

Conclusion

Global Unicast Address:

3	45	16	64	
001	Global Prefix	SID	Interface ID	
public topology local topology link address given by the provider assigned by network engineer auto or manual configuration				
Link-Local Address:				

10	54	64
fe80	00	Interface ID

link address auto-configuration

Facts on Addresses

Addresses

Notation Addressing scheme Kind of addresse

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security

Next Steps ?

Conclusion

Interface ID can be selected differently

- Derived from a Layer 2 ID (I.e. MAC address) :
 - for Link Local address
 - for Global Address : plug-and-play hosts
- Assigned manually :
 - to keep same address when Ethernet card or host is changed
 - to remember easily the address
 - 1, 2, 3, ...
 - last digit of the v4 address
 - the IPv4 address (for nostalgic system administrators)

• ...

Facts on Addresses

Addresses

Notation Addressing scheme Kind of addresse

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security

Next Steps ?

Conclusion

Interface ID can be selected differently

- Derived from a Layer 2 ID (I.e. MAC address) :
 - for Link Local address
 - for Global Address : plug-and-play hosts
- Assigned manually :
 - to keep same address when Ethernet card or host is changed
 - to remember easily the address
 - 1, 2, 3, ...
 - last digit of the v4 address
 - the IPv4 address (for nostalgic system administrators)

• ...

Facts on Addresses

Addresses

Notation Addressing scheme Kind of addresse

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security

Next Steps ?

Conclusion

Interface ID can be selected differently

- Random value :
 - Changed frequently (e.g, every day, per session, at each reboot...) to guarantee anonymity

Hash of other values (experimental) :

- To link address to other properties
- Public key
- List of assigned prefixes
- . . .

Facts on Addresses

Addresses

Notation Addressing scheme Kind of addresse

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security

Next Steps ?

Conclusion

Interface ID can be selected differently

- Random value :
 - Changed frequently (e.g, every day, per session, at each reboot...) to guarantee anonymity
- Hash of other values (experimental) :
 - To link address to other properties
 - Public key
 - List of assigned prefixes
 - ...

Facts on Addresses

- Addresses Notation
- Addressing scheme Kind of addresses
- Protocol
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

- 64 bits is compatible with EUI-64 (i.e. IEEE 1394 FireWire, ...)
 - ▶ IEEE propose a way to transform a MAC-48 to an EUI-64
 - U/L changed for numbering purpose

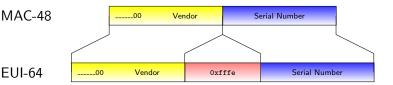
Facts on Addresses

Addresses Notation Addressing scheme Kind of addresse

Protocol

Associated Protocols & Mechanisms

Strategy


Change Security

Next Steps ?

Conclusion

- 64 bits is compatible with EUI-64 (i.e. IEEE 1394 FireWire, ...)
- $\bullet~$ IEEE propose a way to transform a MAC-48 to an EUI-64

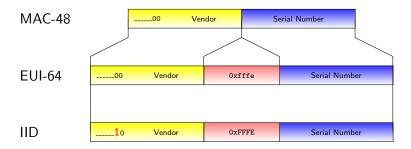
U/L changed for numbering purpose

Facts on Addresses

Addresses Notation Addressing scheme Kind of addresse

Protocol

Associated Protocols & Mechanisms


Strategy

Change Security

Next Steps ?

Conclusion

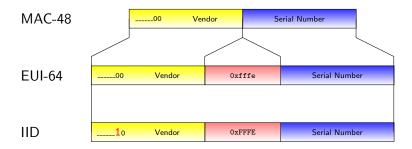
- 64 bits is compatible with EUI-64 (i.e. IEEE 1394 FireWire, ...)
- IEEE propose a way to transform a MAC-48 to an EUI-64
- U/L changed for numbering purpose

Facts on Addresses

Addresses Notation Addressing scheme Kind of addresse

Protocol

Associated Protocols & Mechanisms


Strategy

Change Security

Next Steps ?

Conclusion

- 64 bits is compatible with EUI-64 (i.e. IEEE 1394 FireWire, ...)
- IEEE propose a way to transform a MAC-48 to an EUI-64
- U/L changed for numbering purpose

Addresses

Kind of addresses

Other kind of addresses : ULA (RFC 4193)

Facts on Addresses

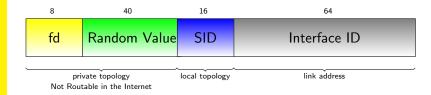
Addresses Notation Addressing scheme Kind of addresses

Kind of addresse

Protocol

Associated Protocols & Mechanisms

Strategy


Change Security

Next Steps ?

Conclusion

- Equivalent to the private addresses in IPv4
- But try to avoid same prefixes on two different sites:
 - avoid renumbering if two company merge
 - avoid ambiguities when VPN are used
- These prefixes are not routable on the Internet

Unique Local IPv6 Unicast Addresses:

Whttp://www.sixxs.net/tools/grh/ula/ to create your own ULA prefix.

Laurent Toutain & Bruno Stévant

June 28, 2011 30 / 65

Facts on Addresses

- Addresses Notation Addressing scheme
- Kind of addresses
- Protocol
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

Generic Format:

8	4	4	112
ff	xRPT	scope	Group ID

- T (Transient) 0: well known address 1: temporary address
- P (Prefix) 1 : assigned from a network prefix (T must be set to 1)
- R (Rendez Vous Point) 1: contains the RP address (P & T set to 1)
- Scope :
 - 1 interface-local
 - 2 link-local
 - 3 reserved
 - 4 admin-local
 - 5 site-local
 - 8 organisation-local
 - e global
 - f reserved

Some Well Known Multicast Addresses

Fa	cts	
Ad	dre	esses

Addre	esses
Notat	

Addressing scheme

Kind of addresses

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security

Next Steps ?

Conclusion

8	4	4	112
ff	0	scope	Group ID

ff02:0:0:0:0:0:0:1 All Nodes Address (link-local scop ff02:0:0:0:0:0:0:2 All Routers Address ff02:0:0:0:0:0:0:5 OSPFIGP ff02:0:0:0:0:0:0:0:6 OSPFIGP Designated Routers ff02:0:0:0:0:0:0:9 RIP Routers ff02:0:0:0:0:0:0:0:fb mDNSv6 ff02:0:0:0:0:0:0:1:2 All-dhcp-agents ff02:0:0:0:0:1:1ffxx:xxxx Solicited-Node Address ff05:0:0:0:0:0:1:3 All-dhcp-servers (site-local scope

Whttp://www.iana.org/assignments/ipv6-multicast-addresses

Some Well Known Multicast Addresses

Fa	cts	
Ad	dre	esses

Addresses	
Notation	

Addressing scheme

Kind of addresses

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security

Next Steps ?

Conclusion

8	4	4	112
ff	0	scope	Group ID

ff02:0:0:0:0:0:0:1 All Nodes Address (link-local scop ff02:0:0:0:0:0:0:2 All Routers Address ff02:0:0:0:0:0:0:5 OSPFIGP ff02:0:0:0:0:0:0:6 OSPFIGP Designated Routers ff02:0:0:0:0:0:0:9 RIP Routers ff02:0:0:0:0:0:0:0:fb mDNSv6 ff02:0:0:0:0:0:0:1:2 All-dhcp-agents ff02:0:0:0:0:1:ffxx:xxxx Solicited-Node Address ff05:0:0:0:0:0:1:3 All-dhcp-servers (site-local scope

Whttp://www.iana.org/assignments/ipv6-multicast-addresses

Protocol IPv6 Header

IPv6 Packet : Simpler 🖄

Facts on Addresses

- Addresses
- Protocol IPv6 Header IPv6 Header ICMPv6
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

Definition

- IPv6 header follows the same IPv4 principle:
 - fixed address size ... but 4 times larger
 - alignment on 64 bit words (instead of 32)
- Features not used in IPv4 are removed
- Minimum MTU 1280 Bytes
 - If L2 cannot carry 1280 Bytes, then add an adaptation layer such as AAL5 for ATM or 6LoWPAN (RFC 4944) for IEEE 802.15.4.

Goal :

- Forward packet as fast as possible
- Less processing in routers
- More features at both ends

- Facts on Addresses
- Addresses
- Protocol IPv6 Header IPv6 Header ICMPv6
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

Ver.	IHL	DiffServ	Packet Length			
	lden	tifier	flag	Offset		
TTL Protocol				Checksum		
		Source	Address			
	Destination Address					
	Options					
	Layer 4					

- Facts on Addresses
- Addresses
- Protocol IPv6 Header IPv6 Header ICMPv6
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

Ver.	IHL	DiffServ	Packet Length				
	Iden	tifier	flag	Offset			
TTL Protocol			Checksum				
		Source	Address				
	Destination Address						
	Options						
Layer 4							

- Facts on Addresses
- Addresses
- Protocol IPv6 Header IPv6 Header ICMPv6
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

0	

Ver.		DiffServ Packet Length		Packet Length	
Identifier		flag Offset			
T	ΓL	Protocol	Checksum		
Source Address					
Destination Address					

Layer 4

	a	ct	S	01	1
A	d	d	re		es

Addresses

Protocol IPv6 Header IPv6 Header ICMPv6

Associated Protocols & Mechanisms

Strategy

Change Security

Next Steps ?

Conclusion

Ver. DiffSer	Packet Length
--------------	---------------

TTL	Protocol	Checksum				
Source Address						
Destination Address						

Layer 4

Laurent Toutain & Bruno Stévant

	a	ct	S	1
A	d	d	re	es

IPv6 Header

07						
Ver.	DiffServ	Packet Length				
		<u> </u>				
TTL	Protocol					
Source Address						
Destination Address						

Layer 4

0

	a	ct	S	01	1
A	d	d	re		es

Addresses

Protocol IPv6 Header IPv6 Header ICMPv6

Associated Protocols & Mechanisms

Strategy

Change Security

Next Steps ?

Conclusion

6	DiffServ	Packet Length				
TTL	Protocol					
Source Address						
Destination Address						

15

23

Layer 4

7

31

Facts on Addresses	
Addresses	0
Protocol IPv6 Header IPv6 Header ICMPv6	6 DiffServ Packet Length
Associated Protocols &	TTL Protocol
Mechanisms	Source Address
Strategy	Destination Address
Change Security	
Next Steps ?	
Conclusion	
	Layer 4

- Facts on Addresses
- Addresses
- Protocol IPv6 Header IPv6 Header ICMPv6
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

Layer 4

- Facts on Addresses
- Addresses
- Protocol IPv6 Header IPv6 Header ICMPv6
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

0	7	· · · · · · · · · · · · · · · · · · ·				
6	Diff	Serv				
	Payload	Length		Next header		
т	TL				-	
Source Address						
Destination Address						

Layer 4 or extensions

	a	ct	S	01	1
A		d	re		es

Addresses

Protocol IPv6 Header IPv6 Header ICMPv6

Associated Protocols & Mechanisms

Strategy

Change Security

Next Steps ?

Conclusion

0		15.	23.	
6	DiffServ			
	Payload Length		Next header	Hop Limit

Source Address	
Destination Address	

Layer 4 or extensions

- Facts on Addresses
- Addresses
- Protocol IPv6 Header IPv6 Header ICMPv6
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

0	7			
6	DiffServ			
	Payload Length		Next header	Hop Limit
		Source	Address	
Destination Address				
	_	Layer 4 or	extensions	

- Facts on Addresses
- Addresses
- Protocol IPv6 Header IPv6 Header ICMPv6
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

6	DiffServ	Flow Label			
	Payload Length		Next header	Hop Limit	
	Source Address				
Destination Address					
	_	Layer 4 or	extensions		

Protocol ICMPv6

Facts on Addresses

- Addresses
- Protocol IPv6 Header IPv6 Header ICMPv6
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

- ICMPv6 is different from ICMP for IPv4 (RFC 4443)
 - IPv6 (or extension): 58
- Features are extended and better organized
- Never filter ICMPv6 messages blindly, be careful to what you do (see RFC 4890)

Format :

0

D.	 	

Туре	Code	Checksum	
Options			

Precision	
type code nature of the message ICMPv6	
code specifies the cause of the message ICMPv6	
mandatory checksum used to verify the integrity of ICMP packet	t l

Laurent Toutain & Bruno Stévant

ICMPv6 : Two Functions

Facts on Addresses

Addresses

Protocol IPv6 Header IPv6 Header ICMPv6

Associated Protocols & Mechanisms

Strategy

Change Security

Next Steps ?

Conclusion

•	Error	occurs	during	forwarding	(<i>value</i> < 128)

1	Destination Unreachable	
2	Packet Too Big	
3	Time Exceeded	
4	Parameter Problem	

• Management Applications (value > 128)

128	Echo Request
129	Echo Reply
130	Group Membership Query
131	Group Membership Report
132	Group Membership Reduction

133	Router Solicitation
134	Router Advertissement
135	Neighbor Solicitation
136	Neighbor Advertissement
137	Redirect

Associated Protocols & Mechanisms Neighbor Discovery

Neighbor Discovery (RFC 4861)

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms

Neighbor Discovery DHCPv6

Strategy

Change Security

Next Steps ?

Conclusion

• IPv6 nodes sharing the same physical medium (link) use Neighbor Discovery (ND) to:

- determine link-layer addresses of their neighbors
 - IPv4 : ARP
- Address auto-configuration
 - Layer 3 parameters: IPv6 address, default route, MTU and Hop Limit
 - Only for hosts
 - IPv4 : impossible, mandate a centralized DHCP server
- Duplicate Address Detection (DAD)
 - IPv4 : gratuitous ARP
- maintain neighbors reachability information (NUD)
- Mainly uses multicast addresses but also takes into account NBMA Networks (eg., ATM)
- Protocol packets are transported/encapsulated by/in ICMPv6 messages:
 - Router Solicitation: 133 ; Router Advertisement: 134 ; Neighbor Solicitation: 135 ; Neighbor Advertisement: 136 ; Redirect: 137

Neighbor Discovery (RFC 4861)

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms

Neighbor Discovery DHCPv6

Strategy

Change Security

Next Steps ?

Conclusion

- IPv6 nodes sharing the same physical medium (link) use Neighbor Discovery (ND) to:
 - determine link-layer addresses of their neighbors
 - IPv4 : ARP
 - Address auto-configuration
 - Layer 3 parameters: IPv6 address, default route, MTU and Hop Limit
 - Only for hosts
 - IPv4 : impossible, mandate a centralized DHCP server
 - Duplicate Address Detection (DAD)
 - IPv4 : gratuitous ARP
 - maintain neighbors reachability information (NUD)
- Mainly uses multicast addresses but also takes into account NBMA Networks (eg., ATM)
- Protocol packets are transported/encapsulated by/in ICMPv6 messages:
 - Router Solicitation: 133 ; Router Advertisement: 134 ; Neighbor Solicitation: 135 ; Neighbor Advertisement: 136 ; Redirect: 137

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms

Neighbor Discovery DHCPv6

Strategy

Change Security

Next Steps ?

- IPv6 nodes sharing the same physical medium (link) use Neighbor Discovery (ND) to:
 - determine link-layer addresses of their neighbors
 - IPv4 : ARP
 - Address auto-configuration
 - Layer 3 parameters: IPv6 address, default route, MTU and Hop Limit
 - Only for hosts !
 - IPv4 : impossible, mandate a centralized DHCP server
 - Duplicate Address Detection (DAD)
 - IPv4 : gratuitous ARP
 - maintain neighbors reachability information (NUD)
- Mainly uses multicast addresses but also takes into account NBMA Networks (eg., ATM)
- Protocol packets are transported/encapsulated by/in ICMPv6 messages:
 - Router Solicitation: 133 ; Router Advertisement: 134 ; Neighbor Solicitation: 135 ; Neighbor Advertisement: 136 ; Redirect: 137

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms

Neighbor Discovery DHCPv6

Strategy

Change Security

Next Steps ?

- IPv6 nodes sharing the same physical medium (link) use Neighbor Discovery (ND) to:
 - determine link-layer addresses of their neighbors
 - IPv4 : ARP
 - Address auto-configuration
 - Layer 3 parameters: IPv6 address, default route, MTU and Hop Limit
 - Only for hosts !
 - IPv4 : impossible, mandate a centralized DHCP server
 - Duplicate Address Detection (DAD)
 - IPv4 : gratuitous ARP
 - maintain neighbors reachability information (NUD)
- Mainly uses multicast addresses but also takes into account NBMA Networks (eg., ATM)
- Protocol packets are transported/encapsulated by/in ICMPv6 messages:
 - Router Solicitation: 133 ; Router Advertisement: 134 ; Neighbor Solicitation: 135 ; Neighbor Advertisement: 136 ; Redirect: 137

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms

Neighbor Discovery DHCPv6

Strategy

Change Security

Next Steps ?

- IPv6 nodes sharing the same physical medium (link) use Neighbor Discovery (ND) to:
 - determine link-layer addresses of their neighbors
 - IPv4 : ARP
 - Address auto-configuration
 - Layer 3 parameters: IPv6 address, default route, MTU and Hop Limit
 - Only for hosts !
 - IPv4 : impossible, mandate a centralized DHCP server
 - Duplicate Address Detection (DAD)
 - IPv4 : gratuitous ARP
 - maintain neighbors reachability information (NUD)
- Mainly uses multicast addresses but also takes into account NBMA Networks (eg., ATM)
- Protocol packets are transported/encapsulated by/in ICMPv6 messages:
 - Router Solicitation: 133 ; Router Advertisement: 134 ; Neighbor Solicitation: 135 ; Neighbor Advertisement: 136 ; Redirect: 137

Facts on Addresses

Addresses

Protocol

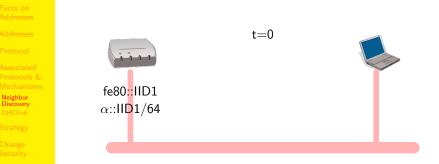
Associated Protocols & Mechanisms

Neighbor Discovery DHCPv6

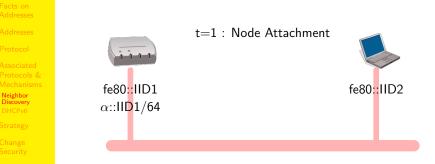
Strategy

Change Security

Next Steps ?


- IPv6 nodes sharing the same physical medium (link) use Neighbor Discovery (ND) to:
 - determine link-layer addresses of their neighbors
 - IPv4 : ARP
 - Address auto-configuration
 - Layer 3 parameters: IPv6 address, default route, MTU and Hop Limit
 - Only for hosts !
 - IPv4 : impossible, mandate a centralized DHCP server
 - Duplicate Address Detection (DAD)
 - IPv4 : gratuitous ARP
 - maintain neighbors reachability information (NUD)
- Mainly uses multicast addresses but also takes into account NBMA Networks (eg., ATM)
- Protocol packets are transported/encapsulated by/in ICMPv6 messages:
 - Router Solicitation: 133 ; Router Advertisement: 134 ; Neighbor Solicitation: 135 ; Neighbor Advertisement: 136 ; Redirect: 137

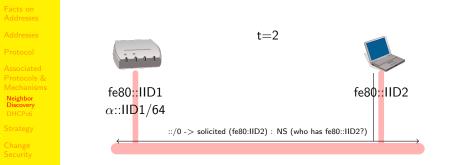
- Facts on Addresses
- Addresses
- Protocol
- Associated Protocols & Mechanisms
- Neighbor Discovery DHCPv6
- Strategy
- Change Security
- Next Steps ?
- Conclusion



Next Steps ?

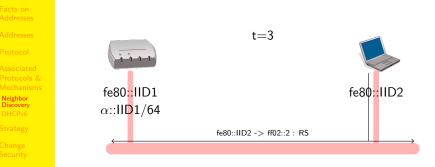
Conclusion

Time t=0: Router is configured with a link-local address and manually configured with a global address (α ::/64 is given by the network administrator)



Next Steps ?

Conclusion


Host constructs its link-local address based on the interface MAC address

Host does a DAD (i.e. sends a Neighbor Solicitation to query resolution of its own address (tentative): no answers means no other host has this value).

Next Steps ?

Conclusion

Host sends a Router Solicitation to the Link-Local All-Routers Multicast group using the newly link-local configured address

Addresses

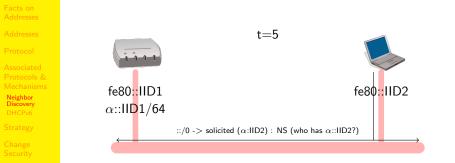
Protocol

Associated Protocols & Mechanisms

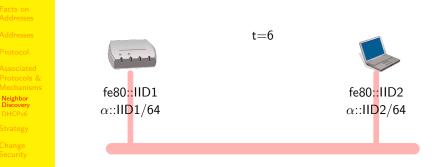
Neighbor Discovery DHCPv6

Strategy

Change Security


Next Steps ?

Conclusion


Router directly answers the host using Link-local addresses. The answer may contain a/several prefix(es). Router can also mandate hosts to use DHCPv6 to obtain prefixes (statefull auto-configuration) and/or other parameters (DNS servers...): Bit M = 1.

Host does a DAD (i.e. sends a Neighbor Solicitation to query resolution of its own global address: no answers means no other host as this value).

Next Steps ?

Conclusion

Host sets the global address and takes answering router as the default router.

Optimistic DAD RFC 4429

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms

Neighbor Discovery DHCPv6

Strategy

Change Security

Next Steps ?

- DAD is a long process:
 - Send NS
 - Timeout
 - May be repeated
- For Link-Local and Global addresses
- Mobile nodes are penalized
 - Discover Network
 - Authentication
 - DAD, RS/RA, DAD
- oDAD allows a host to use the address before DAD
- If no answer to DAD then the address becomes a valid one

Addresses

Protocol

Associated Protocols & Mechanisms

Neighbor Discovery DHCPv6

Strategy

Change Security

Next Steps ?

Conclusion

fe80 <mark>∷</mark> IID1		fe80::IID2
α::IID1/64	fe80::IID2 -> ff02::1:2 Information-Request	α::II <mark>D</mark> 2/64

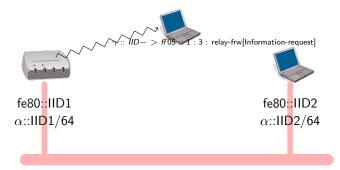
Host needs only static parameters (DNS, NTP,...). It sends an Information-Request message to All_DHCP_Agents multicast group. The scope of this address is link-local.

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms

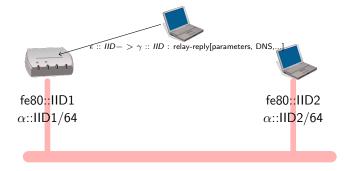

Neighbor Discovery DHCPv6

Strategy

Change Security

Next Steps ?

Conclusion



A relay (generally the router) encapsulates the request into a Forward message and sends it either to the All_DHCP_Servers site-local multicast group or to a list of pre-defined unicast addresses.

- Addresses
- Protocol
- Associated Protocols & Mechanisms
- Neighbor Discovery DHCPv6
- Strategy
- Change Security
- Next Steps ?
- Conclusion

The server responds to the relay

Associ Protoc Mecha Neighb Discove

Stateless DHCPv6 (RFC 3736): With static parameters

ses			
ses			
ol			
ated			
ols &			
nisms	fe80::IID1		fe80 <mark>::</mark> IID2
or			
ery	α ::IID1/64		α::I <mark>ID</mark> 2/64
	a 2 /01	fe80::IID1 -> fe80::IID2	a
		parameters: DNS,	
		parameters: DN3,	

The router extracts information from the message to create answer and sends information to the host

Addresses

Protocol

Associated Protocols & Mechanisms

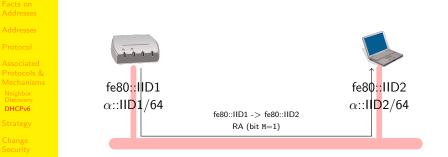
Neighbor Discovery DHCPv6

Strategy

Change Security

Next Steps ?

Conclusion



Host is now configured to resolve domain names through the $\ensuremath{\mathsf{DNS}}$

Associated Protocols & Mechanisms DHCPv6

DHCPv6 : Stateful Auto-Configuration

Router responds to RS with a RA message with bit M set to 1. Host should request its IPv6 address from a DHCPv6 server.

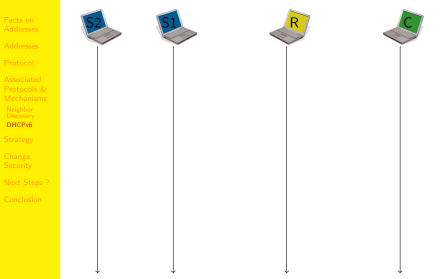
DHCPv6 Full Features

Facts on Addresses

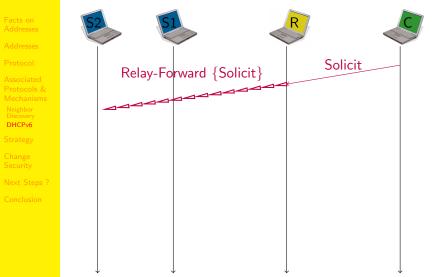
Addresses

Protocol

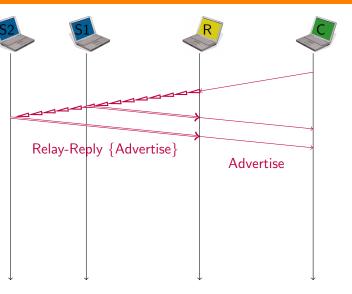
- Associated Protocols & Mechanisms
- Neighbor Discovery DHCPv6

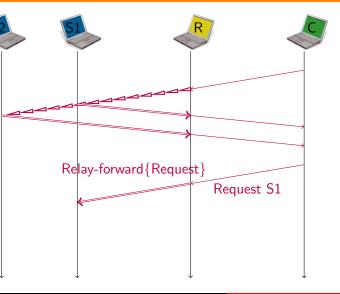

Strategy

Change Security

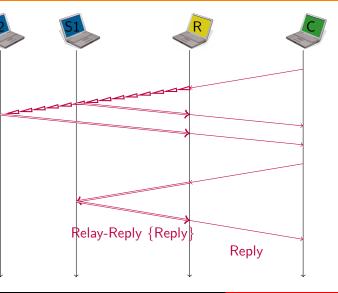

Next Steps ?

- For address or prefix allocation information form only one DHCPv6 must be taken into account. Four message exchange :
 - Solicit : send by clients to locate servers
 - Advertise : send by servers to indicate services available
 - Request : send by client to a specific server (could be through relays)
 - Reply : send by server with parameters requested
- Addresses or Prefixes are allocated for certain period of time
 - Renew : Send by the client tells the server to extend lifetime
 - Rebind : If no answer from renew, the client use rebind to extend lifetime of addresses and update other configuration parameters
 - Reconfigure : Server informs availability of new or update information. Clients can send renew or Information-request
 - Release : Send by the client tells the server the client does not need any longer addresses or prefixes.
 - Decline : to inform server that allocated addresses are already in use on the link

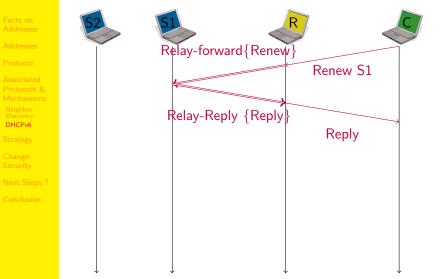


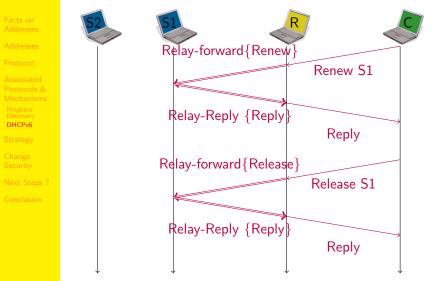


- Facts on Addresses
- Addresse
- Protocol
- Associated Protocols & Mechanisms Neighbor Discovery DHCPv6
- Strategy
- Change Security
- Next Steps ?
- Conclusion



- Facts on Addresses
- Addresse
- Protocol
- Associated Protocols & Mechanisms Neighbor Discovery DHCPv6
- Strategy
- Change Security
- Next Steps ?
- Conclusion




- Facts on Addresses
- Addresse
- Protocol
- Associated Protocols & Mechanisms Neighbor Discovery DHCPv6
- Strategy
- Change Security
- Next Steps ?
- Conclusion

Strategy

How to introduce IPv6 ?

How to introduce IPv6?

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms

Strategy How to introduce IPv6 ?

Change Security

Next Steps ?

- Renater: native
- Free: 6rd
- but why ?
 - No services
 - But no more IPv4 addresses for services
 - Use IPv6 in provider network and tunnel IPv4 packets inside IPv6 packets
 - Put NAT inside provider network
 - One IPv4 address can be shared among several users ?
 - How many users ?
- More difficult to install a server
 - No wellknow port
 - New services with IPv6?

Change Security

IPv6 Format Versus Addresses

Addresses versus Packet Format

Facts on Addresses					
Addresses					
Protocol		IPv4			
Associated Protocols & Mechanisms					
Strategy				IPv6	
Change Security IPv6 Format Versus Addresses Devil is in details	1980		1993		2013
Next Steps ?					
Conclusion	С	lassfull		CIDR	

????

Change Security

Devil is in details

What is changing?

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security

IPv6 Format Versus Addresses Devil is in details

Next Steps ?

- In theory
 - minor changes
 - Use CIDR rules
 - No Multi-Homing
 - Use PI
 - One Prefix per site
 - Same routing protocols
 - Same Firewalls
 - Extensions not used
 - Blocking incoming traffic
 - Too restrictive ?
- In practice
 - New implementation ⇒ New bugs
 - Transition mechanisms ⇒ Tunneled traffic
 - System administrator does not manage addresses but prefixes
 - New protocol: Neighbor Discovery

What is changing?

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security

IPv6 Format Versus Addresses Devil is in details

Next Steps ?

- In theory
 - minor changes
 - Use CIDR rules
 - No Multi-Homing
 - Use PI
 - One Prefix per site
 - Same routing protocols
 - Same Firewalls
 - Extensions not used
 - Blocking incoming traffic
 - Too restrictive ?
- In practice
 - New implementation ⇒ New bugs
 - Transition mechanisms ⇒ Tunneled traffic
 - System administrator does not manage addresses but prefixes
 - New protocol: Neighbor Discovery

What is changing?

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security

IPv6 Format Versus Addresses Devil is in details

Next Steps ?

- In theory
 - minor changes
 - Use CIDR rules
 - No Multi-Homing
 - Use PI
 - One Prefix per site
 - Same routing protocols
 - Same Firewalls
 - Extensions not used
 - Blocking incoming traffic
 - Too restrictive ?
- In practice
 - New implementation ⇒ New bugs
 - Transition mechanisms ⇒ Tunneled traffic
 - System administrator does not manage addresses but prefixes
 - New protocol: Neighbor Discovery

Eduroam

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security IPv6 Format Versus Addre

Devil is in details

Next Steps ?

Conclusion

• Charter:

L'établissement doit garder les traces nécessaires à l'identification d'un usager à partir de l'adresse IP utilisée en cas d'abus constaté : accounting RADIUS, logs DHCP, NAT,... Ces traces doivent comporter un horodatage fiable.

• No more NAT, No more DHCP

- RADIUS will authorize users, but does not know the source IID
- Works now but limit IPv6 flexibility.
- Everything is in . . .

Eduroam

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security IPv6 Format Versus Addre

Devil is in details

Next Steps ?

Conclusion

• Charter:

L'établissement doit garder les traces nécessaires à l'identification d'un usager à partir de l'adresse IP utilisée en cas d'abus constaté : accounting RADIUS, logs DHCP, NAT,... Ces traces doivent comporter un horodatage fiable.

• No more NAT, No more DHCP

- RADIUS will authorize users, but does not know the source IID
- Works now but limit IPv6 flexibility.
- Everything is in ...

Two approaches:

- Facts on Addresses
- Addresses
- Protocol
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- IPv6 Format Versus Addresses Devil is in details
- Next Steps ?
- Conclusion

- Try to mimic IPv4 behavior
 - Mandate DHCPv6 for addresses allocation
- Adapt to IPv6
 - Development of new tools and protocols around IPv6 for management.
- What to do with stateless auto-configuration?
 - It is not a new security problem
 - Any node can announce wrong prefixes
 - in IPv4, any node can be a DHCP Server
 - but lead to configuration problems.
 - How to block wrong prefix announcement ?
 - Use Cryptographic Certificats (SEND)?
 - Good in a very control environment
 - To complex and not enough flexible in company network.

Best Current Practice

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security

IPv6 Format Versus Addresses Devil is in details

Next Steps ?

Conclusion

- In IPv4:
 - centralize management
 - DHCP server linked with a DNS
 - Is it realy secure ?
- In IPv6:
 - Authentication at Layer 2 ?
 - IEEE 802.1X, WPA, PANA,...
 - Who has this address ?
 - A new group SAVI allows switches to log IPv6 addresses associated to switch port.
 - IEEE 802.1 \Rightarrow identity/port & PANA \Rightarrow address/port
 - Filter RA on switch port not connected to routers

DNS registration

- Facts on Addresses
- Addresses
- Protocol
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- IPv6 Format Versus Addresses Devil is in details
- Next Steps ?
- Conclusion

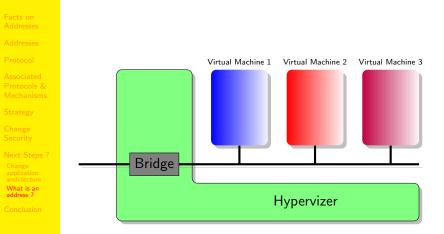
- In IPv4
 - DHCP server register host name and address in the DNS
 - direct and reverse
- In IPv6
 - The host cannot register easily in the DNS
 - Common key is incompatible with auto-configuration
- Do we need to register a IPv6 client in the DNS ?
 - Some applications require it
 - Is it really the good principle ? (security, confidentiality)

Next Steps ?

Change application architecture

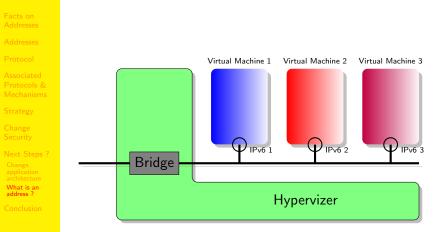
Change application architecture

- Facts on Addresses
- Addresses
- Protocol
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Change application architecture What is an address ?
- Conclusion

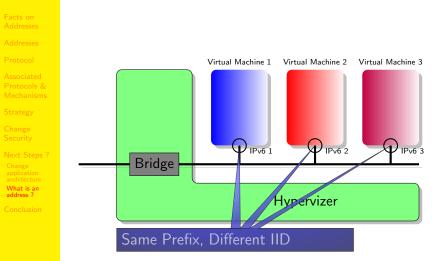

- Applications are based on Client/Server paradigm.
 - Due to NAT, servers must be located in the core network.
 - With IPv6, servers can be located anywhere
 - keep data localy
 - manage identity/authentication
 - make links between data
 - Better control of the information
 - Need for better throughput for uplinks
 - Optical fiber ?

Next Steps ?

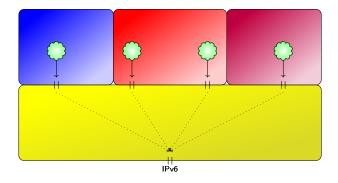
What is an address ?



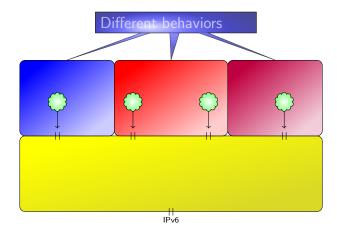
Virtualization



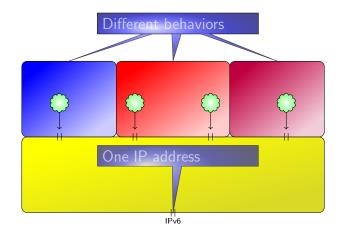
Virtualization



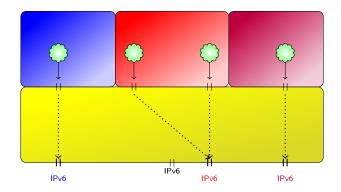
Virtualization

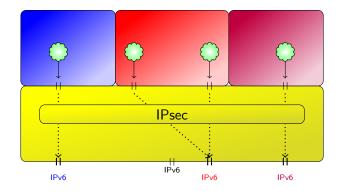


- Facts on Addresses
- Addresses
- Protocol
- Associated Protocols & Mechanism
- Strategy
- Change Security
- Next Steps ?
- Change application architectur
- What is an address ?
- Conclusion



Laurent Toutain & Bruno Stévant





- Facts on Addresses
- Addresses
- Protocol
- Associated Protocols & Mechanism
- Strategy
- Change Security
- Next Steps 7
- Change application architectur
- What is an address ?
- Conclusion

- Facts on Addresses
- Addresses
- Protocol
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Change application architectur
- What is an address ?
- Conclusion

Generalization to Identification

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms

Strategy

Change Security

Next Steps ?

Change application architecture

What is an address ?

Conclusion

- Address is no more a host property, but is linked to applications
 - Use rights as for file system
- Step to separate localization and identification.
 - Prefix part used for mobility or multi-homing
 - IID: used by applications
- Identification will not be unique:
 - trade-off between Authenticated (not unique) and Anonymous.
 - Authenticated with the bank.
 - Authenticated with the IRS.
 - Authenticated with a VoIP provider.
 - Anonymous on the web.

Facts on Addresses

- Addresses
- Protocol
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

IPv6 is coming

- There is no other alternative
- Program applications using IPv6 compatible API
 - If addresses are sent in payload, take care of IPv6
- 3 Think differently:
 - Servers are not always far-away
- Internet v4 evolution was blocked by the address space
 Everything become possible with IPv6

Facts on Addresses

- Addresses
- Protocol
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

- IPv6 is coming
 - There is no other alternative
- Program applications using IPv6 compatible API
 - $\bullet\,$ If addresses are sent in payload, take care of IPv6
 - Think differently:
 - Servers are not always far-away
- - Everything become possible with IPv6

Facts on Addresses

- Addresses
- Protocol
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

- IPv6 is coming
 - There is no other alternative
- Program applications using IPv6 compatible API
 - $\bullet\,$ If addresses are sent in payload, take care of IPv6
- O Think differently:
 - Servers are not always far-away
- Internet v4 evolution was blocked by the address space
 Everything become possible with IPv6

Facts on Addresses

- Addresses
- Protocol
- Associated Protocols & Mechanisms
- Strategy
- Change Security
- Next Steps ?
- Conclusion

- IPv6 is coming
 - There is no other alternative
- Program applications using IPv6 compatible API
 - If addresses are sent in payload, take care of IPv6
- O Think differently:
 - Servers are not always far-away
- **(**) Internet v4 evolution was blocked by the address space
 - Everything become possible with IPv6

